Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Hortic Res ; 11(4): uhae052, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38638681

RESUMEN

Bud endodormancy in perennial plants is a sophisticated system that adapts to seasonal climatic changes. Growth-promoting signals such as low temperature and gibberellins (GAs) are crucial for facilitating budbreak following endodormancy release (EDR). However, the regulatory mechanisms underlying GA-mediated budbreak in tree peony (Paeonia suffruticosa) remain unclear. In tree peony, the expression of PsmiR159b among three differentially expressed miR159 members was inhibited with the prolonged chilling, and overexpression of PsMIR159b delayed budbreak, whereas silencing PsmiR159b promoted budbreak after dormancy. PsMYB65, a downstream transcription factor in the GA pathway, was induced by prolonged chilling and exogenous GA3 treatments. PsMYB65 was identified as a target of PsmiR159b, and promoted budbreak in tree peony. RNA-seq of PsMYB65-slienced buds revealed significant enrichment in the GO terms regulation of 'cell cycle' and 'DNA replication' among differentially expressed genes. Yeast one-hybrid and electrophoretic mobility shift assays demonstrated that PsMYB65 directly bound to the promoter of the type-D cyclin gene PsCYCD3;1. Dual-luciferase reporter assay indicated that PsMYB65 positively regulate PsCYCD3;1 expression, suggesting that miR159b-PsMYB65 module contributes to budbreak by influencing the cell cycle. Our findings revealed that the PsmiR159b-PsMYB65 module functioned in budbreak after dormancy by regulating cell proliferation, providing valuable insights into the endodormancy release regulation mechanism.

2.
Front Plant Sci ; 15: 1362804, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567129

RESUMEN

Calcium plays a crucial role in plant growth and development, yet little is known about its function in endodormancy regulation. Tree peony (Paeonia suffruticosa), characterized by compound buds and large flowers, is well-known for its ornamental and medicinal value. To break bud dormancy release is a prerequisite of flowering and forcing culture, particularly during the Spring Festival. In this study, the Ca2+ chelator EGTA and Ca2+ channel blocker LaCl3 were applied, resulting in a significant delay in budburst during both chilling- and gibberellin (GA)- induced dormancy release in a dosage-dependent manner. As expected, the retardation of bud break was recovered by the supplementation of 30 mM CaCl2, indicating a facilitating role of calcium in dormancy release. Accordingly, several calcium-sensor-encoding genes including Calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs) were significantly up-regulated by prolonged chilling and exogenous GAs. Ultrastructure observations revealed a decline in starch grains and the reopening of transport corridors following prolonged chilling. Calcium deposits were abundant in the cell walls and intercellular spaces at the early dormant stage but were enriched in the cytosol and nucleus before dormancy release. Additionally, several genes associated with dormancy release, including EBB1, EBB3, SVP, GA20ox, RGL1, BG6, and BG9, were differentially expressed after calcium blocking and recovery treatments, indicating that calcium might partially modulate dormancy release through GA and ABA pathways. Our findings provide novel insights into the mechanism of dormancy release and offer potential benefits for improving and perfecting forcing culture technology in tree peonies.

3.
Hortic Res ; 10(5): uhad044, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37786434

RESUMEN

Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter, and the activation of the GA signaling pathway is the key to breaking endodormancy. GA signal transduction is involved in many physiological processes. Although the GA-GID1-DELLA regulatory module is conserved in many plants, it has a set of specific components that add complexity to the GA response mechanism. DELLA proteins are key switches in GA signaling. Therefore, there is an urgent need to identify the key DELLA proteins involved in tree peony bud dormancy release. In this study, the prolonged chilling increased the content of endogenously active gibberellins. PsRGL1 among three DELLA proteins was significantly downregulated during chilling- and exogenous GA3-induced bud dormancy release by cell-free degradation assay, and a high level of polyubiquitination was detected. Silencing PsRGL1 accelerated bud dormancy release by increasing the expression of the genes associated with dormancy release, including PsCYCD, PsEBB1, PsEBB3, PsBG6, and PsBG9. Three F-box protein family members responded to chilling and GA3 treatments, resulting in PsF-box1 induction. Yeast two-hybrid and BiFC assays indicated that only PsF-box1 could bind to PsRGL1, and the binding site was in the C-terminal domain. PsF-box1 overexpression promoted dormancy release and upregulated the expression of the dormancy-related genes. In addition, yeast two-hybrid and pull-down assays showed that PsF-box1 also interacted with PsSKP1 to form an E3 ubiquitin ligase. These findings enriched the molecular mechanism of the GA signaling pathway during dormancy release, and enhanced the understanding of tree peony bud endodormancy.

4.
Hortic Res ; 10(4): uhad033, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090095

RESUMEN

MicroRNAs (miRNAs) are non-coding RNAs that interact with target genes and are involved in many physiological processes in plants. miR172-AP2 mainly plays a role in the regulation of flowering time and floral organ differentiation. Bud dormancy release is necessary for forcing culture of tree peony in winter, but the mechanism of dormancy regulation is unclear. In this study, we found that a miR172 family member, PsmiR172b, was downregulated during chilling-induced bud dormancy release in tree peony, exhibiting a trend opposite to that of PsTOE3. RNA ligase-mediated (RLM) 5'-RACE (rapid amplification of cDNA ends) confirmed that miR172b targeted PsTOE3, and the cleavage site was between bases 12 (T) and 13 (C) within the complementary site to miR172b. The functions of miR172b and PsTOE3 were detected by virus-induced gene silencing (VIGS) and their overexpression in tree peony buds. PsmiR172b negatively regulated bud dormancy release, but PsTOE3 promoted bud dormancy release, and the genes associated with bud dormancy release, including PsEBB1, PsEBB3, PsCYCD, and PsBG6, were upregulated. Further analysis indicated that PsTOE3 directly regulated PsEBB1 by binding to its promoter, and the specific binding site was a C-repeat (ACCGAC). Ectopic expression in Arabidopsis revealed that the PsmiR172b-PsTOE3 module displayed conservative function in regulating flowering. In conclusion, our results provided a novel insight into the functions of PsmiR172-PsTOE3 and possible molecular mechanism underlying bud dormancy release in tree peony.

5.
Genes (Basel) ; 13(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36292603

RESUMEN

As a crop irrigated primarily by rain, the quality and yield of peanuts are significantly limited by drought. To date, many studies have indicated that fatty acid desaturase (FAD) genes enhance plant tolerance to drought stresses. In this study, 16, 15, and 31 FADs were identified in Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively. All the FADs were divided into four subfamilies, which had relatively conserved gene structures, motifs, and domains. The synteny relationships and chromosomal position analysis showed that the FADs in subgenome pairs, A. duranensis-A. hypogaea (AA) and A. ipaensis-A. hypogaea (BB), were homologous, and their physical locations were consistent. The Ka/Ks results indicated that nine FAD genes underwent a purifying selection, and Ah|FAD3.2 experienced positive selection during tetraploid peanut speciation. Various cis-acting elements related to hormone signaling and stress responsiveness in promoters and the predicted miRNA targeting Ah|FADs suggested that these genes play crucial roles in drought tolerance. The expression profiles of Ah|FADs in 22 tissues and drought-tolerant and -sensitive cultivars under drought stress suggested that 4 and 6 FADs were putative genes related to oil accumulation and drought, respectively. These findings will help provide insight into the potential functional roles of the FAD genes, which may aid in dealing with plant drought stress.


Asunto(s)
Arachis , MicroARNs , Arachis/genética , Arachis/metabolismo , Sequías , Flavina-Adenina Dinucleótido/metabolismo , Ácido Graso Desaturasas/genética , MicroARNs/metabolismo , Hormonas
6.
BMC Plant Biol ; 21(1): 569, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863105

RESUMEN

BACKGROUND: Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. RESULTS: An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. CONCLUSION: We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.


Asunto(s)
Genoma de Planta , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Secuenciación Completa del Genoma , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/genética , MicroARNs , Filogenia , Proteínas de Plantas/genética , Semillas/química , Especificidad de la Especie
7.
Plant Physiol Biochem ; 167: 771-784, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34530322

RESUMEN

Bud endodormancy is accompanied by transport channel apertures blockage through callose deposition, and its resume to growth requires evoking ß-1,3-glucanases (BGs) to unchoke the conduit. To understand out its working manner, the statuses of the transport channels were evaluated and candidate BGs were identified during chilling and gibberellin acids (GA) induced dormancy release in tree peony. Calcein reflects plasmodesmata permeability, and no calcein was observed in the bud together with density aniline blue fluorescent around the stem phloem at 0 d chilling. With the increase of chilling accumulation, the contents of glucan declined and the activities of gulcanase increased gradually in buds, and the calcein reached the top of flower primordia at 21 d chilled bud. Both GA3 and GA4 feedings promoted bud sprouting and growth along with rapidly unchoking the transport channels, and GA3 was more effective. Several candidate ß-1,3-glucanase genes were detected, combining transcriptional profiling and quantitative PCR analysis. PsBG1, PsBG3, PsBG6, PsBG8 and PsBG9 were inducible by chilling accumulation and presented laminarin hydrolyzing activities after prokaryotically expression, while PsBG1, PsBG3, PsBG8 and PsBG9 responded to GAs application. Subcellular localizations revealed that PsBG6 and PsBG9 were plasmodesmata residents. It was concluded that PsBG6 played a vital role in chilling accumulation response and PsBG9 was central in GAs-induced dormancy release, and they could be used as marker genes for dormancy release in tree peony. These results were of great value to understand the mechanism of dormancy regulation and as an important fundamental for forcing culture technology in tree peony.


Asunto(s)
Giberelinas , Paeonia , Flores , Regulación de la Expresión Génica de las Plantas , Árboles
8.
DNA Cell Biol ; 40(4): 606-617, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33493084

RESUMEN

DNA methylation is an important epigenetic regulator of gene expression. Application of 5-azacytidine (a methylation inhibitor) significantly promoted bud sprouting rate and the elongation of branches and leaves in "Luhehong" and "Fengdanbai." In total, 11,166 and 11,443 fragments were obtained by methylation-sensitive amplified polymorphism (MSAP) analysis during chilling-induced dormancy release in the two varieties, respectively. Total methylation levels were high in dormant buds, mainly for hemimethylation, which were slowly increased by short-term chilling (7 days) and decreased by long-term chilling. Compared with 0 day, the ratio of the methylation downregulated group increased during dormancy release, whereas that of the upregulated group declined gradually. These variations were consistent with the dynamic expressions of DNA methyltransferase/demethylase genes and their enzyme activity changes. In total, 13 polymorphic MSAP fragments were similar to known proteins (E-value <1e-5), and their methylation statuses were consistent with their expression patterns. The expression change of PsCWH, encoding cell wall hydrolase, might be due to DNA methylation ratios of CpG sites identified by bisulfite sequencing. These results indicated that chilling accumulation promoted bud dormancy release and sprouting through DNA methylation modification of specific genes. This study would provide new insights into the molecular mechanism underlying dormancy release in tree peony.


Asunto(s)
Epigénesis Genética/genética , Paeonia/genética , Latencia en las Plantas/genética , Azacitidina/farmacología , China , Biología Computacional/métodos , ADN/genética , Metilación de ADN/genética , Epigenómica/métodos , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Paeonia/metabolismo , Latencia en las Plantas/fisiología , Árboles/genética , Árboles/metabolismo
9.
BMC Plant Biol ; 20(1): 484, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33096979

RESUMEN

BACKGROUND: Bud dormancy is a sophisticated strategy which plants evolve to survive in tough environments. Endodormancy is a key obstacle for anti-season culture of tree peony, and sufficient chilling exposure is an effective method to promote dormancy release in perennial plants including tree peony. However, the mechanism of dormancy release is still poorly understood, and there are few systematic studies on the metabolomics during chilling induced dormancy transition. RESULTS: The tree peony buds were treated with artificial chilling, and the metabolmics analysis was employed at five time points after 0-4 °C treatment for 0, 7, 14, 21 and 28 d, respectively. A total of 535 metabolites were obtained and devided into 11 groups including flavonoids, amino acid and its derivatives, lipids, organic acids and its derivates, nucleotide and its derivates, alkaloids, hydroxycinnamoyl derivatives, carbohydrates and alcohols, phytohormones, coumarins and vitamins. Totally, 118 differential metabolites (VIP ≥ 1, P < 0.05) during chilling treatment process were detected, and their KEGG pathways involved in several metabolic pathways related to dormancy. Sucrose was the most abundant carbohydrate in peony bud. Starch was degradation and Embden Meyerhof Parnas (EMP) activity were increased during the dormancy release process, according to the variations of sugar contents, related enzyme activities and key genes expression. Flavonoids synthesis and accumulation were also promoted by prolonged chilling. Moreover, the variations of phytohormones (salicylic acid, jasmonic acid, abscisic acid, and indole-3-acetic acid) indicated they played different roles in dormancy transition. CONCLUSION: Our study suggested that starch degradation, EMP activation, and flavonoids accumulation were crucial and associated with bud dormancy transition in tree peony.


Asunto(s)
Flavonoides/metabolismo , Glucólisis , Paeonia/metabolismo , Latencia en las Plantas , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Glucólisis/fisiología , Metabolómica , Paeonia/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología
10.
Plant Physiol Biochem ; 147: 91-100, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31855819

RESUMEN

Release of bud dormancy is a prerequisite for the growth resumption and production in perennial plants such as tree peony. DNA methylation plays a pivotal role in regulating gene expression. In this study, combination of morphologic observation and DNA methylation analysis indicated that 5-azacytidine (5-azaC) application for 7 d declined 5 mC quantities and promoted dormancy release. After 5-azaC treatment, total 174,341 unigenes and 1818 differentially expression genes (DEGs) were obtained by RNA-seq, of which there were 1194 DEGs after 1 d 5-azaC treatment (AD1 vs CD1), and 624 DEGs after 7 d (AD7 vs CD7), respectively. The KEGG pathway analysis identified that totally 10 DEGs annotated in DNA replication pathway were enriched when AD7 compared with CD7. Furthermore, the expression patterns of several DEGs by real-time quantitative RT-PCR were consistent with that of RNA-seq data. 5-azaC application significantly decreased the expression levels of DNA methyltransferase genes, PsCMT3, PsMET1 and PsDRM2, and increased the transcript of demethylase gene PsROS1. Simultaneously, total methyltransferases activity decreased, and demethylase activity was induced by 5-azaC. In summary, application of 5-azaC inhibited the expression of the genes related to growth and development in short-term, indicating a possible toxic effect to plant, and its long-term effect was to induce hypomethylation by increasing demethylase genes transcripts and decreasing the expressions of methyltransferase genes, and then activate cell cycle, DNA replication and glycol-metabolism processes, which subsequently accelerated dormancy release. All these would provide a new strategy to further understand the molecular mechanism of dormancy release in tree peony.


Asunto(s)
Azacitidina , Metilación de ADN , Flores , Paeonia , Latencia en las Plantas , Azacitidina/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Paeonia/efectos de los fármacos , Latencia en las Plantas/efectos de los fármacos , Latencia en las Plantas/genética
11.
Plant Physiol Biochem ; 144: 64-72, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31561199

RESUMEN

Bud endodormancy in tree peony is a growth cessation-like state, and sufficient chilling perception is necessary to break it. In this study, 120 plants were subjected to 0-4 °C climate chamber for 0-28 d with a weekly interval, morphology and structure changes of buds were studied with a scanning electron microscope (SEM) and paraffin sections during the dormancy process. Dormancy status was evaluated after being transferred to greenhouse for 30 d. Results showed that the diameter of the buds gradually expanded, along with continuous elongation of sepals, petals, stamens and carpels in the chilling accumulation process. Notably, dormancy release was marked with the establishment of xylem vessels in lateral vein of the petal. Meanwhile, DNA methylation was detected by HPLC and immunochemical technology, aimed to illuminate the role of DNA methylation in the dormancy release, we found that 5 mC level fell from 39.4% to 24.2% after exposed to 28 d chilling. These results were consistent with the immunochemical analysis, and inversely related to the sprouting rate after being moved to greenhouse for 30 d. Exogenous application of 5azaC (5-azacytidine) decreased DNA methylation level, accompanied by an improved bud sprouting capacity, while the effect of SAM (S-adenosylmethionine) was the opposite. In summary, prolonged chilling was accompanied by further differentiation and development of the compound bud, which resulted in DNA hypomethylation and promoted dormancy release in tree peony.


Asunto(s)
Metilación de ADN/genética , Paeonia/genética , Frío , Regulación de la Expresión Génica de las Plantas/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología
12.
Sci Rep ; 8(1): 4537, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540706

RESUMEN

Tree peony, one of the most valuable horticultural and medicinal plants in the world, has to go through winter to break dormancy. Growing studies from molecular aspects on dormancy release process have been reported, but inadequate study has been done on miRNA-guided regulation in tree peony. In this study, high-throughput sequencing was employed to identify and characterize miRNAs in three libraries (6 d, 18 d and 24 d chilling treatments). There were 7,122, 10,076 and 9,097 unique miRNA sequences belonging to 52, 87 and 68 miRNA families, respectively. A total of 32 conserved miRNAs and 17 putative novel miRNAs were identified during dormancy release. There were 771 unigenes as potential targets of 62 miRNA families. Total 112 known miRNAs were differentially expressed, of which 55 miRNAs were shared among three libraries and 28 miRNAs were only found in 18 d chilling duration library. The expression patterns of 15 conserved miRNAs were validated and classified into four types by RT-qPCR. Combining with our microarray data under same treatments, five miRNAs (miR156k, miR159a, miR167a, miR169a and miR172a) were inversely correlated to those of their target genes. Our results would provide new molecular basis about dormancy release in tree peony.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Paeonia/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Paeonia/genética , Latencia en las Plantas , ARN de Planta/genética , Análisis de Secuencia de ARN/métodos , Árboles/genética , Árboles/fisiología
13.
Electron. j. biotechnol ; 32: 19-25, Mar. 2018. graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1022497

RESUMEN

Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1) with higher salinity resistance than its mutagenic parent HY22 (S3) was obtained. Transcriptome sequencing and digital gene expression (DGE) analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL). All unigenes were searched against the euKaryotic Ortholog Groups (KOG), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs) between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs), major intrinsic proteins (MIPs) or aquaporins, metallothioneins (MTs), lipid transfer protein (LTP), calcineurin B-like protein-interacting protein kinases (CIPKs), 9-cis-epoxycarotenoid dioxygenase (NCED) and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut.


Asunto(s)
Arachis/genética , Plantas Tolerantes a la Sal/genética , Tolerancia a la Sal/genética , Transcriptoma/genética , Suelo , Cloruro de Sodio , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Mutación
14.
PLoS One ; 11(5): e0155780, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27228117

RESUMEN

The MPT transports Pi to synthesize ATP. PsMPT, a chilling-induced gene, was previously reported to promote energy metabolism during bud dormancy release in tree peony. In this study, the regulatory elements of PsMPT promoter involved in chilling response were further analyzed. The PsMPT transcript was detected in different tree peony tissues and was highly expressed in the flower organs, including petal, stigma and stamen. An 1174 bp of the PsMPT promoter was isolated by TAIL-PCR, and the PsMPT promoter::GUS transgenic Arabidopsis was generated and analyzed. GUS staining and qPCR showed that the promoter was active in mainly the flower stigma and stamen. Moreover, it was found that the promoter activity was enhanced by chilling, NaCl, GA, ACC and NAA, but inhibited by ABA, mannitol and PEG. In transgenic plants harboring 421 bp of the PsMPT promoter, the GUS gene expression and the activity were significantly increased by chilling treatment. When the fragment from -421 to -408 containing a MYC cis-element was deleted, the chilling response could not be observed. Further mutation analysis confirmed that the MYC element was one of the key motifs responding to chilling in the PsMPT promoter. The present study provides useful information for further investigation of the regulatory mechanism of PsMPT during the endo-dormancy release.


Asunto(s)
Frío , Paeonia/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Flores , Regulación de la Expresión Génica de las Plantas , Paeonia/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos , Homología de Secuencia de Ácido Nucleico , Árboles/genética , Árboles/crecimiento & desarrollo
15.
PLoS One ; 8(2): e55297, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405132

RESUMEN

Endo-dormant flower buds must pass through a period of chilling to reinitiate growth and subsequent flowering, which is a major obstacle to the forcing culture of tree peony in winter. Customized cDNA microarray (8×15 K element) was used to investigate gene expression profiling in tree peony 'Feng Dan Bai' buds during 24 d chilling treatment at 0-4°C. According to the morphological changes after the whole plants were transferred to green house, endo-dormancy was released after 18 d chilling treatment, and prolonged chilling treatment increased bud break rate. Pearson correlation hierarchical clustering of sample groups was highly consistent with the dormancy transitions revealed by morphological changes. Totally 3,174 significantly differentially-expressed genes (P<0.05) were observed through endo-dormancy release process, of which the number of up-regulated (1,611) and that of down-regulated (1,563) was almost the same. Functional annotation of differentially-expressed genes revealed that cellular process, metabolic process, response to stimulus, regulation of biological process and development process were well-represented. Hierarchical clustering indicated that activation of genes involved in carbohydrate metabolism (Glycolysis, Citrate cycle and Pentose phosphate pathway), energy metabolism and cell growth. Based on the results of GO analysis, totally 51 probes presented in the microarray were associated with GA response and GA signaling pathway, and 22 of them were differently expressed. The expression profiles also revealed that the genes of GA biosynthesis, signaling and response involved in endo-dormancy release. We hypothesized that activation of GA pathway played a central role in the regulation of dormancy release in tree peony.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas/genética , Paeonia/genética , Latencia en las Plantas/fisiología , Metabolismo de los Hidratos de Carbono , Análisis por Conglomerados , Frío , Metabolismo Energético , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Giberelinas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Paeonia/metabolismo , Latencia en las Plantas/genética , Transducción de Señal
16.
Ying Yong Sheng Tai Xue Bao ; 23(1): 133-9, 2012 Jan.
Artículo en Chino | MEDLINE | ID: mdl-22489490

RESUMEN

Taking the detached leaves of tree peony (Paeonia suffruticosa cv. 'Roufurong') as test materials, this paper studied the effects of high temperature (40 degrees C) and low temperature (15 degrees C) stresses on the PS II functions and physiological characteristics of peony leaves under strong light intensity (1400 micromol x m(-2) x s(-1)), with 25 degrees C as the control. With the increasing time of high- and low temperature stress, the maximal photochemical efficiency (Fv/Fm), actual quantum yield of photosystem II (Phi(PS II)) , and efficiency of excitation capture of open PS II center (Fv'/Fm') all decreased continuously. After recovered in the dark for 4 hours, the Fv/Fm in treatments 15 degrees C and 25 degrees C quickly recovered, but that in treatment 40 degrees C only recovered to 75.5% of non-treatment, even if the leaves were treated in the dark for 15 hours. At 40 degrees C, the balance of excited energy between PS I and PS II under strong light intensity was perturbed seriously. Treatment 40 degrees C inhibited the superoxide dismutase (SOD) activity, enhanced the production of O2-, H2O2, and MDA, and reduced the contents of chlorophyll and soluble protein. This study revealed that strong light combined with high temperature impaired the photosynthetic apparatus of the tree peony irreversibly, whereas strong light plus low temperature had weaker impact.


Asunto(s)
Paeonia/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Hojas de la Planta/fisiología , Estrés Fisiológico , Frío , Calor , Fotosíntesis/fisiología , Superóxido Dismutasa/metabolismo
17.
Gene ; 497(2): 256-62, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22197659

RESUMEN

Tree peony (Paeonia suffruticosa Andrews) is a well-known horticultural and medicinal plant. The flower buds must go through a period of endo-dormancy before bud sprouting in winter, but very little information concerned with dormancy release is available. We obtained 625,342 sequencing reads with massive parallel pyrosequencing on the Roche 454 GS FLX platform (mean length: 358.1bp). De novo assemblies yielded 23,652 contigs and singletons. 15,284 contigs longer than 300bp were further annotated, among them 12,345 ESTs showed significant similarity with sequences present in public databases (with an E-value <1e-10). 484 putative transcription factors were obtained. In addition, 2253 potential Simple Sequence Repeats (SSR) loci were identified in the 454-ESTs. Total 149 pairs of primers were designed, and 121 pairs were amplified successfully in initial screening. In addition, 73 pairs of primers displayed polymorphism. This sequence collection provides a significant resource for gene discovery during endo-dormancy of tree peony.


Asunto(s)
Genoma de Planta , Paeonia/genética , Árboles/genética , Frío , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica/métodos , Repeticiones de Microsatélite , Latencia en las Plantas/genética , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/genética
18.
Planta ; 228(4): 545-52, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18566830

RESUMEN

A cDNA clone was isolated from tree peony (Paeonia suffruticosa) subtractive cDNA library of burst buds and characterized with regard to its sequence, expression in response to chilling treatment during the release of bud dormancy, and its function in transgenic Arabidopsis thaliana. The clone, designated as PsMPT, contains 1,615 nucleotides with an open reading frame of 1,119 nucleotides, and the deduced amino acid sequence shows high homology with mitochondrial phosphate transporters (MPTs) from various organisms. The mRNA accumulation of PsMPT in tree peony was strongly induced by chilling treatment during the release of bud dormancy. When the treated plants were transferred to normal growth conditions, the level of PsMPT transcripts induced by sufficient chilling could be maintained high, whereas that induced by insufficient chilling decreased sharply. The transgenic Arabidopsis plants that overexpress PsMPT showed rapid growth and earlier flowering than wild-type plants. ATP contents in the transgenic plants were much higher than that in wild-type plants through various developmental stages. Together, these results suggest that the product of PsMPT is a MPT and might play an important role during the release of bud dormancy in tree peony.


Asunto(s)
Frío , Flores/crecimiento & desarrollo , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Paeonia/fisiología , Proteínas de Transporte de Fosfato/fisiología , Proteínas de Plantas/fisiología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , ADN Complementario , ADN de Plantas , Flores/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Paeonia/clasificación , Paeonia/metabolismo , Proteínas de Transporte de Fosfato/química , Filogenia , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...